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Unit 6 – Dynamic Partial Reconfiguration 
 

INTRODUCTION TO SELF-RECONFIGURABLE SYSTEMS 
 

MOTIVATION 

▪ Digital systems can be characterized by a 
series of properties (or objectives):  

Energy, Performance, Accuracy, Hardware 

footprint, Bandwidth, etc. 

 
 
 
 
▪ Dynamic Reconfigurable Computing 

Management: The ability to control the 
aforementioned properties at run-time. We 

can deliver a dynamically self-adaptive 
system (by dynamic allocation of resources 
and dynamic frequency control) that 
satisfies time-varying simultaneous 
requirements. 
 

▪ Dynamic Reconfigurable Computing Management allows us to control digital system properties at run-time: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
▪ The system can then carry out independent tasks in time. For example: 

✓ Task 1: A video processing system is asked to deliver real time performance at 30 frames per second on limited battery 
life that will also need to operate for at least 10 hours. 

✓ Task 2: The video processing system is asked to deliver performance at 100 frames per second at some minimum level 
of accuracy.  
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DEVELOPMENT OF RUN-TIME HARDWARE ALTERABLE SYSTEMS 
 

TECHNOLOGIES 

 
DYNAMIC PARTIAL RECONFIGURATION (DPR) 
▪ Dynamic Partial Reconfiguration (DPR) enables the run-time allocation and de-allocation of hardware resources by modifying 

or switching off portions of the FPGA (or PL inside the Zynq-7000) while the rest remains intact, continuing its operation. 
▪ The operating design is modified by loading a partial bitstream configuration file. After a full bitstream configuration file 

configures the FPGA (Full Reconfiguration), partial bit files can be downloaded to modify reconfigurable regions in the FPGA 
without compromising the integrity of the applications 
running on those parts of the device that are not being 
reconfigured (this is called the static region). The figure 
illustrates the idea where the Block A (user-defined 
reconfigurable region) can be modified by any of the partial 
bit files (A1.bit, A2.bit, A3.bit, or A4.bit). The static 

region remains functioning and it is completely unaffected 
by the loading of a partial bit file. This is akin to multiplexing 
FPGA resources over time. 

 
▪ This technology can dramatically extend the capabilities of FPGAs. In addition to potentially reducing size, weight, power, 

and cost, Dynamic Partial Reconfiguration enables new types of FPGA designs that provide efficiencies not attainable with 
conventional design techniques. The main FPGA vendors, ALTERA and Xilinx provide commercial support for this technology. 

▪ Xilinx devices: The Reconfigurable Region can be dynamically reconfigured by writing on: 
✓ The Processor Configuration Access Port (PCAP) inside the PS. This is the preferred method for Zynq devices. 
✓ The Internal Configuration access port (ICAP) inside the PL. Here, an AXI interface is commonly built around the ICAP 

(e.g.: Xilinx Partial Reconfiguration Controller, custom-built controller) in order to easily write partial bitstreams to the 
ICAP; this method is less favored for Zynq devices, it can be useful in FPGAs with soft-core processors. 

✓ JTAG interface: This is manual configuration. Partial bitstreams are downloaded via the Vivado Hardware manager. 
 

DYNAMIC FREQUENCY CONTROL  
▪ The mixed-mode clock managers (MMCM) inside the 7-Series 

FPGAs (Artix-7, Virtex-7, Zynq-7000 PL) provide a wide range 
of clock management features.  (more info on UG472: 7 Series 
FPGAs Clocking Resources - User Guide) 

▪ The Dynamic Reconfiguration Port (DRP) can adjust a clock 
frequency and phase at run-time without loading a new 
bitstream. In the figure, CLKFX is connected to one of several 
output clocks (clkout0). The frequency of CLKFX is controlled 
by M, D, and O0. (more info on XAPP888: MMCM and PLL 
Dynamic Reconfiguration) 

▪ You can instantiate the Xilinx primitives MMCME2_ADV and 

BUFG (In Vivado: Project Manager → Language Templates → 

VHDL → Artix-7 → Clock Components). M and D are design 
parameters of MMCME2_ADV. The value of O0 can be modified at run-time. This is how we can dynamically modify the 

frequency of CKFX.  
 
 Technology that enables reconfiguration (full/partial) of FPGAs 
▪ Xilinx and ALTERA use a memory-based paradigm for computation of Boolean functions as well as for the realization of 

interconnections. Among the programmable technologies available, we can list SRAM, EEPROM, and Flash-based. SRAM 
devices, the dominant technology for FPGAs, are based on static CMOS memory technology, and are re-programmable and 
in-system programmable. 

▪ In a SRAM-based FPGA, the states of the logic blocks, I/O blocks, and 
interconnections are controlled by the output of the SRAM cells. The basic 
SRAM configuration is constructed from two cross-coupled inverters and 
uses a standard CMOS processor. A new connection or function is 
implemented by a change on the SRAM cell values. Moreover, the device 
can be rapidly reconfigured in-circuit (when mounted on the circuit board 
with the other components) and on-the-fly (while the device is operating). 

▪ A major disadvantage of SRAM programming technology is its large area. 
It takes at least five transistors to implement a SRAM cell, plus at least 
one transistor to serve as a programmable switch. Furthermore, the device is volatile, i.e., the configuration of the device 
stored in the SRAM cells is lost if the power is cut off. Thus, external storage or non-volatile devices such as EEPROMs, Flash 
devices are required to store the configuration and load it into the FPGA at power on. 
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IMPLEMENTATION DETAILS 

▪ Reconfigurable Partition (RP): Region in the FPGA fabric (or PL fabric) that can be modified at run-time. It used to be 

called Partial Reconfigurable Region (PRR). There can be several RPs in a design. 
▪ Reconfigurable Module (RM): Variant for each reconfigurable Partition. 
▪ The figure depicts an embedded All-Programmable SoC system that supports Dynamic Partial Reconfiguration (DPR) and 

Dynamic Frequency Control (DFC). It includes an AXI custom peripheral, which contains a Reconfigurable Partition (RP). 
▪ In general, we can have several AXI custom-built peripherals, where each peripheral can have its own Reconfigurable 

Partition (RP). Moreover, within each peripheral, there can be several RPs. 
▪ The figure depicts a generic dynamically reconfigurable embedded system that reconfigures via ICAP. Also, many peripherals 

(memory controller, DMA controller, Ethernet, SD controller) are part of the FPGA fabric. Here, we would have to instantiate 
every peripheral into the FPGA fabric. The microprocessor (uP) can be hard-wired (ARM, PowerPC) or soft-core (MicroBlaze).  

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
▪ Zynq-7000 devices contain a PS unit that includes the ARM as well as many peripherals (including the PCAP Interface that 

has a dedicated DMA path). This is much simpler to handle as the designer only requires to deal with the software drivers 
(no need to instantiate the peripherals): 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
▪ The AXI Peripheral contains the proper interface to the AXI bus. In addition, in AXI4-Full there is an interface to the iFIFO 

and oFIFO. This interface is usually outside the Reconfigurable Partition (RP), but in general it can be inside it. 
▪ Each hardware configuration is represented by a partial bitstream file and a frequency of operation. Every single hardware 

configuration has to be pre-computed prior to final system implementation. 
 
▪ A Dynamic Manager (software routine running on the ARM inside the PS) provides input data, retrieves outputs from the 

AXI Peripherals, and deals with constraints (automatically generated or external) and interrupts. More importantly, it is in 
charge of swapping hardware configurations based on a particular set of rules. 

 

DPR ISSUES 
▪ For proper DPR operation, we need to address two issues that arise due to DPR (especially when the interface to the FIFOs 

is inside the RP): 
✓ The RP outputs toggle during DPR and they might cause erratic behavior if the PRR outputs are directly connected to 

‘sensitive’ signals (e.g.: AXI ready/valid signals, FIFO write enable). Thus, they need to be disabled during Partial 
Reconfiguration (they are usually AND’ed with 0).  

✓ The RP flip flops are not automatically reset after DPR (unlike in full reconfiguration). Depending on the circuitry, this 
might not be an issue; however, in most cases we must reset all the flip flops inside the Partial Reconfigurable Region 
after Partial Reconfiguration. One way to do it is by using a PR_done signal to be asserted (via software) after the DPR 

process is completed. 
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TIME AND MEMORY OVERHEAD 
▪ Reconfiguration Time Overhead: This depends on the bitstream size, the design of the AXI interface design around the 

ICAP core, and the speed with which we can move data from memory to the ICAP core. Depending on the application, this 
overhead can be negligible or significant (reconfiguration speeds can range from KB/s to about 400 MB/s for a 100 MHz 
ICAP clock). In the case of the PCAP, the speed is more or less constant (~128 MB/s for a Zynq-700 device in the ZYBO 
Board); this high speed is achieved due to the use (by default) of DMA. 

▪ Memory Overhead: The partial bitstream files are stored in memory. Depending on the application, the number of 
combinations can range from the MBs to the GBs and it can pose a significant challenge to the system design.  

 

GENERAL APPROACH FOR SELF-RECONFIGURABLE SYSTEMS 
▪ Definition of objective functions: Energy, Power, Performance, Accuracy, bandwidth.  
▪ Definition of the Dynamic Regions (PRRs): This depends on the application. The more PRRs, the more complex the 

system becomes. 
▪ Development and parameterization of high-performance hardware architectures: Here, we should explore 

techniques that optimize the amount of computational resources, exploit parallelism and pipelining.  
▪ Design Space Exploration of the multi-objective space:  Parameterization allows us to quickly generate a large set of 

different hardware profiles by varying the design parameters. This helps to explore trade-offs among design parameters and 
the objectives. 

▪ (optional) Multi-objective optimization: Not all points in the design space are optimal; here, we get rid of sub-optimal 
points. 

▪ Dynamic management based on simultaneous multi-variable requirements: The system receives stimuli in the 
form of multi-variable constraints and reconfigures itself via DPR and/or Dynamic Frequency Control to satisfy the multi-
variable constraints. 

 

GENERAL PR DESIGN STEPS 
▪ Partition your application into Software and Hardware Components. 
▪ Hardware: partition your design between the Static Region and Reconfigurable Partitions (RPs). 

✓ Create a Vivado Project for your hardware. Design partition usually requires rearrangement of hardware description files 
so that Reconfigurable Partition(s) are exposed in the code. 
 For each Reconfigurable Partition, determine how many Reconfigurable Modules (RMs) you plan to have. The process 

of generating different variations (RMs) for a Reconfigurable Partition should be straightforward in your HDL 
description (e.g.: using generic parameters in VHDL). 

✓ In a Zynq-7000 PSoC, the Static Region (or Static Design) can include the PS. 
✓ Perform thorough simulation of your modified design. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
▪ Follow the VivadoTM Design flow for Partial Reconfiguration to generate: i) partial bitstreams (one per each RM variation for 

each RP), and ii) full bitstreams (one for an entire design with a unique RM for each RP). Two design flows are available: 
✓ GUI-based method 

✓ TCL-based non-project flow (we will cover this). See Embedded System Design for Zynq PSoC Tutorial → Unit 6 and 7. 

 
▪ SDK (PS+PL Projects): Launch SDK for your full Vivado project that includes both the PS and the PL. The partial bitstreams 

must be accessible to the Zynq-7000 Dev. Board (e.g.: SD card, USB, Ethernet). You need to be able to write on the PCAP 
port. The PR examples provided here include software applications that you can use as templates for your design. 
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TCL-BASED NON-PROJECT FLOW 
▪ This flow uses TCL commands and scripts. Script files automate FPGA simulation, synthesis, implementation, including Partial 

Reconfiguration. CAD tools for most vendors (Xilinx, Intel, Mentor Graphics) support TCL scripts and commands. 
 
Design Process using Tcl scripts 
▪ We use Master scripts where the design sources, parameters, and structure are 

defined. They are available in the examples shown in this Unit: 
✓ design_complete.tcl: It compiles the entire design, from RTL to 

bitstreams (full, partial). Use it if the RP constraints (size, location) are 
known and merged with the I/O and clocking constraints in a top.xdc file. 

✓ design.tcl: If the RP constraints are unknown, this script synthesizes the 

modules of the design. After that, the rest of the process is to be completed 
with individual commands. 

▪ The Master Tcl scripts define the design file hierarchy shown here. 
▪ For your design, you need to edit the Master scripts to suit your needs. 
 
Design File Hierarchy for a PR (Partial Reconfiguration) Project 

▪ This is shown in the figure for a project called ‘myPR_project’. The directory 

structure underneath this top-level folder is described below. Note: a checkpoint 
is a snapshot of a design at any stage of the design process. 
✓ \Bitstreams: Empty folder, the target location for the bitstreams. 

✓ \Implement: This folder is the target location for checkpoints and reports 

for each of the design configurations. Implementation results for each 
configuration (each RM variation within each RP) are stored in a subfolder. 

✓ \Sources: Folder with the design sources (.vhd, .v, .dcp, .xdc, etc). 

 \hdl: Source code (VHDL, Verilog) is in this folder. There are folders for 

static logic (top) and for each RM variant. 
 \xdc: Constraints files, they are usually partitioned into: I/O and clocking 

constraints (top_io.xdc) and RP constraints (pblocks.xdc). Usually, 

the RP constraints are not known ahead of time. 
✓ \Synth: This folder contains empty folders that will store the post-synthesis 

checkpoints for all the modules of the design. 
✓ \Tcl: It contains all the lower-level Tcl scripts invoked by the Tcl scripts at 

the top level (design_complete.tcl, design.tcl). 

 
Design Steps 
▪ Organize the design files for TCL-based PR flow in the \Sources folder. This 

folder structure is depicted in more detail in the figure. 
✓ Place the Static Design files (top-level logic without the RPs) on the /hdl/top folder, so that the top-level logic is 

synthesized with black boxes for the Reconfigurable Partitions (RPs). 
✓ Place the design files for each RM variation per RP in a unique folder. 

The design files are the same, but the top design file in the RP has 
different parameters for each RM. 

✓ Include constraint file(s) (.xdc): I/O and clocking constraints, as 

well as PR size constraints (if available beforehand). 
▪ Synthesize the Static and Reconfigurable Modules separately. 
▪ Generate a first complete design (Static + a Reconfigurable Module per 

RP) called First Configuration: 
✓ Load the Static design. Add in the respective RMs to the RPs for this 

First Configuration. 
✓ Create or load physical constraints (Pblocks) for the RPs. 
✓ Implement (Place & Route) the design. Save the fully routed design 

of this First Configuration as a checkpoint. 
▪ Remove the RMs from this First Configuration. Lock the static placement 

and routing. Save this Static-only design checkpoint. 
▪ Implement all the other configurations (all RM variations per RP): 

✓ Add new RMs to the Static-only design. Implement this new 
configuration and save it as a checkpoint. 

✓ To implement new configurations, you need to remove the RMs of 
the current configuration. You can also close the current project and 
load the Static-only design checkpoint. 

✓ Run a verification utility (pr_verify) on all Configurations. 
✓ Create bitstreams (full and partial) for each Configuration (including a Configuration with a black-box for each RPs). 
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PR EXAMPLES 
 

CASE EXAMPLE: SIMPLE LEDS (ONLY PL) 

▪ Step-by-step instructions on how to implement this project are available at Embedded System Design for Zynq PSoC Tutorial 

→ Unit 6. The folder structure (and design files) for this 4-bit LED Pattern Controller (1 RP) is available here. This circuit has 

one Reconfigurable Partition (RP). 
▪ RP output toggling: The outputs are connected to LEDs, so this is nonissue. 
▪ Clearing FFs inside the RP after DPR: Since is a visual application, this is not a problem. In any case, we can always 

reset the RP manually (via the external 𝑟𝑒𝑠𝑒𝑡 input). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hardware Partitioning: Static Region and Reconfigurable Partitions: 
▪ The figure depicts the organization of the design files when 

the hardware has been partitioned into the Static Region and 
the Reconfigurable Partition. This hardware-only project has 
been thoroughly synthesized and simulated. 

✓ Reconfigurable Partition (RP): The file count_rp.vhd is the 

top file of the Reconfigurable Partition (RP). In this file, 
the parameters of the RP are indicated, and we can 
quickly modify them in order to create a RM variant. There 

are 2 parameters in this design (COUNT, DIR) that allow 

us to create a large set of RM variants. 
 

▪ After we verify the proper functioning of our partitioned design, we create the /Sources folder structure for the TCL-based 

flow for Partial Reconfiguration. In this PR example, we have 1 RP with 2 RM variants that are created by modifying the 

parameter DIR (RM 1: DIR=UP, RM 2: DIR=DOWN). The figure depicts the /Sources directory structure. 
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CASE EXAMPLE: PIXEL PROCESSOR (PS+PL) 

▪ Step-by-step instructions on how to implement this project are available at Embedded System Design for Zynq PSoC Tutorial 

→ Unit 7. The folder structure (and design files) for this project is available here. The design includes one Reconfigurable 

Partition (RP).  
✓ Reconfigurable Partition (RP): It consists of 4 LUTs 8to8. We can create different hardware configurations by 

modifying the parameter F (1..5) of the Pixel Processor design. We fix NC=4, NI=NO=8. 

✓ Static Region: It consists of all the hardware outside the 4 LUTs 8to8. The portion in light blue is the static portion in 
the AXI4-Full Peripheral. However, note that the Processing System (PS) and any extra hardware (e.g.: Processor System 
Reset, AXI Bus) is also considered part of the static region. This poses a challenge to the Tcl-based non-project flow. 

▪ RP output toggling: The FIFO structure avoids PR toggling as the PR outputs are only connected to the FIFO data input. 
▪ Clearing FFs inside the RP after DPR: The RP does not have FFs, so we do not face this issue here. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hardware Partitioning: Static Region and Reconfigurable Partitions: 
▪ We depict the design structure of the Embedded System that has been partitioned into the Static Region and the 

Reconfigurable Partition. This hardware/software project has been tested (via SDK) as a non-PR project. Once we complete 
the PR implementation, we will use this hardware/software project to test the PR Project. 

▪ The AXI4-Full Pixel Processor peripheral is depicted in this design structure. Note that it contains the Reconfigurable Partition 
(RP) and some Static logic. Before we tested the hardware/software system, this hardware-only project was thoroughly 
synthesized and simulated. 
✓ AXI4-Full Pixel Processor Peripheral: Note that the file arrangement has been modified (with respect to the AXI4-Full 

Pixel Processor peripheral in Embedded System Design for Zynq PSoC Tutorial → Unit 4) in order to expose the 

Reconfigurable Partition (RP). 

✓ Reconfigurable Partition (RP): The file pixfull_rp.vhd is the top file of the RP. In this file, the parameters of the RP are 

indicated, and we can quickly modify them in order to create a RM variant. There is only one modifiable parameter (to 

keep the hardware interfacing as depicted here): F (1, 2, 3, 4, 5) that allow us to create up to 5 RM variants. 

 
▪ Static Region: Since the PS (and extra designs) is included here, the VHDL files of the static portion of the AXI4-Full Peripheral 

are not sufficient. 
✓ We will create instead an embedded system for the AXI4-Full Pixel Processor Peripheral that does not include the 

Reconfigurable Partition (RP). We will synthesize this project (the RP will be a black box) and extract the synthesized 
checkpoint (.dcp file) from the embedded synthesis. This file will be placed in the PR Project folder \Synth\Static.  
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http://www.secs.oakland.edu/~llamocca/Tutorials/EmbSys/Tutorial%20-%20Unit%207.pdf
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▪ After we verify the proper functioning of our partitioned design (as a non-PR project), we create the /Sources folder structure 

for the TCL-based flow for Partial Reconfiguration. In this PR example, we have 1 RP and we use only 2 RM variants that 

are created by modifying the parameter F (RM 1: F= 1, RM 2: F=2). The figure depicts the /Sources directory structure. 

✓ Note that the \Sources\hdl\top folder is empty. The Master Tcl scripts will not compile this folder as the Synthesized 

file (.dcp) is already available in \Synth\Static. 

✓ The \Sources\xdc folder is also empty. There are no I/Os from the PL. However, we still need to indicate the RP 

constraints (this will be done during the PR implementation of this design).  

  

myAXIfifo.vhd

pixfull_rp.vhd

pixfull_fifointf.vhd

LUT_group.vhd

Reconfigurable Partition

Parameters
are set here

Static Region

LUT_NItoNO.vhd

LUT_values8to8.txt

my_genpulse_sclr.vhd

myAXI_IP.vhd

mypixfull_v1_0_S00_AXI.vhd

mypixfull_v1_0.vhd

design_1_wrapper.vhd

Processing System (PS)

Processor System Reset

AXI Smart Connect

AXI4-Full
Peripheral

pack_xtras.vhd

Sources

hdl

top

pixfull_1

xdc

Static: Design files with no RPs

Design files for RP1 RM1

Constraint file(s) for the top design

pixfull_rp.vhd

pixfull_fifointf.vhd

LUT_group.vhd

LUT_NItoNO.vhd

LUT_values8to8.txt

pack_xtras.vhd

Parameter F=1
EMPTY

pixfull_2

Design files for RP1 RM2

pixfull_rp.vhd

pixfull_fifointf.vhd

LUT_group.vhd

LUT_NItoNO.vhd

LUT_values8to8.txt

pack_xtras.vhd

Parameter F=2

EMPTY
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CASE EXAMPLE: 2D DCT (PS+PL) 

▪ The VHDL code of this IP is available at Tutorial: Embedded System Design for Zynq SoC - Unit 7.  

✓ Reconfigurable Partition (RP): In this project, we allow the RP to vary one parameter (N: DCT Transform Size: 4, 8, 

16), while we fix the parameters B=8, NO=16, NH=16. If the Transform size changes, so do the input interface, the 

output buffer, the output interface and the FSM @ CLKFX. This is why all these components are part of the RP (including 
the 2D DCT IP). 

✓ Static Region: It consists of all the hardware outside the RP. The portion in light blue is the static portion in the AXI4-
Full Peripheral (here, this is the circuits working @ CLKFX). Any extra hardware (e.g.: Processor System Reset, Processing 
System) is considered part of the static region. 

 
▪ RP output toggling: The signal 𝑜𝑤𝑟𝑒  can modify the oFIFO contents. So, we need to reset the FIFOs after DPR. 

▪ Clearing FFs inside the RP after DPR: The RP includes FFs, including those of the FSM @ CLKFX. We need to clear all 
the FFs after DPR, especially to place the FSM @CLK_FX into the initial state after DPR. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
▪ 𝑃𝑅_𝑟𝑒𝑠𝑒𝑡: This signal resets both the RP FFs and the FIFOs via a simple software command (we write the word 0xAA995577 

onto address 101100). Make sure than when writing to the peripheral, we avoid the address 101100. 
✓ 𝑃𝑅_𝑟𝑒𝑠𝑒𝑡: This is the output of a flip flop. This signal is a pulse of 

one clock cycle. Every time axi_awaddr (latched S_AXI_AWADDR) 
and S_AXI_WDATA match what we want, we generate a pulse.  

✓ Notice that once S_AXI_WDATA is captured by AXI, the latched 
address axi_awaddr might increase its value by 4 (or changes). Or S_AXI_WDATA will not be the valid value anymore. 
This usually makes sure that 𝑃𝑅_𝑟𝑒𝑠𝑒𝑡 is only one pulse (and not a sequence of pulses generated in case that axi_awaddr 

and S_AXI_WDATA hold their values). To be absolute sure, include the condition axi_wready=axi_wvalid=1 when 
asserting 𝑃𝑅_𝑟𝑒𝑠𝑒𝑡. 

 
▪ Note that in Vivado 2016.2, we can use the RESET_AFTER_RECONFIGURATION property to reset all the flip flops inside the 

PR (at the expense of extra constraints on the RP shape). However, this will not reset the FIFOs, as they are not part of the 
RP. If we do not reset FIFO, the circuit might not work after DPR. 
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http://www.secs.oakland.edu/~llamocca/EmbSysZynq.html
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▪ The original FSM @ S_AXI_ACLK was used for the pixel processor and the 2D DCT. This FSM can be used for any circuit that 
uses the iFIFO/oFIFO structure (as mentioned in Notes – Unit 5). This circuit is shown below (on the left). 

▪ However, if we want to carry out Dynamic Partial Reconfiguration, we need to reset both the FIFOs and the RP using the 
signal 𝑃𝑅_𝑟𝑒𝑠𝑒𝑡. To reset the FIFOs, we need to assert the signal ‘rst’ again. The new FSM @ S_AXI_ACLK account for this 

and it is shown below (on the right). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
▪ Note that you can use this circuit as a template to build any AXI4-Full Peripheral that supports DPR. The AXI4-Full Peripheral 

should like 2D DCT, where the RP includes: input and output interface to FIFOs, FSM @ CLKFX (to interface to FIFOs and 
the IP core), and the IP core (in this case the 2D DCT). These are the only components that we need to modify. The 
components running @ S_AXI_ACLK do not need to be modified. 
✓ Output buffer of the 2D DCT: This is considered part of Output Interface to oFIFO. In the figure, we chose to display it 

independently. 

0

1
iwren1

S1

oempty

ifull

mem_wren

orden1

S2

10

0
1

0

0

oempty

FSM at S_AXI_ACLK

S_AXI_ARESETN=0 (C0)

C=15
CC+1

fifo_fsm_rst 1

no

yes

rstAXI_ARESETN

fifo_fsm_rst

mem_rden

0
axi_rvalid

PR_reset

0

1

1

1

C0

0

1 iwren1

S1

oempty

ifull

mem_wren

orden1

S2

10

01

0

1

0

oempty

FSM at S_AXI_ACLK

S_AXI_ARESETN=0 (C0)

C=15
CC+1

fifo_fsm_rst 1

no

yes

rstAXI_ARESETN

fifo_fsm_rst

mem_rden

1

0
axi_rvalid

C0


